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HARNACK’S INEQUALITY FOR COOPERATIVE

WEAKLY COUPLED ELLIPTIC SYSTEMS

Aristotle Arapostathis, Mrinal K. Ghosh and Steven I. Marcus

A b st r ac t . We consider cooperative, uniformly elliptic systems, with bounded coefficients and coupling
in the zeroth-order terms. We establish two analogues of Harnack’s inequality for this class of systems:
A weak version is obtained under fairly general conditions, while imposing an irreducibility condition
on the coupling coefficients we obtain a stronger version of the inequality. This irreducibility condition
is also necessary for the existence of a Harnack constant for this class of systems. A Harnack inequality
is also obtained for a class of superharmonic functions.

1. Introduction

There is considerable literature on the Harnack inequality for uniformly elliptic partial differential

equations [2], [3], [5]. Harnack’s inequality, apart from being interesting on its own right, plays a

very important role in the theory of partial differential equations. For example, it is applied to

derive the interior estimates of the gradients of the solutions. Let us first state this result in the

simplest situation. Let Ω be a bounded domain in Rd, Γ a closed subset of Ω and u : Ω → R a

nonnegative harmonic function, i.e., ∆u = 0 in Ω. Then there exists a constant C which depends

only on d, the diameter of Ω and the distance between Γ and ∂Ω, such that

u(x) ≤ C u(y) , ∀ x, y ∈ Γ .

The Harnack inequality is also valid for both weak and strong solutions of second-order, uniformly

elliptic operators with bounded coefficients [2], [3]. Extensions to unbounded coefficients have also

been established [9].

Consider a system of equations in u(x) =
(
u1(x), . . . , un(x)

)
of the form

(1.1) (Lu)k(x) := Lkuk(x) +
n∑
j=1
j 6=k

ckj(x)uj(x) = 0 , 1 ≤ k ≤ n ,

where n is a positive integer and each Lk is a second-order, uniformly elliptic operator given by

(1.2) Lk :=
d∑

i,j=1

akij(x)
∂2

∂xi∂xj
+

d∑
i=1

bki (x)
∂

∂xi
+ ckk(x) .

The operator L is called cooperative, if the coupling coefficients ckj are nonnegative for k 6= j.
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Definition 1.1. We denote by L(λ, d, n) the class of all cooperative operators L of the form (1.1)–

(1.2), with coefficients akij ∈ C0,1(Rd), bki , ckj ∈ L∞(Rd), bounded in L∞-norm by a constant λ ≥ 1,

and satisfying the uniform ellipticity condition

λ−1‖ζ‖2 ≤
d∑

i,j=1

akij(x)ζiζj ≤ λ‖ζ‖2, for all x, ζ ∈ Rd, 1 ≤ k ≤ n .

A function u is called L-harmonic in a domain Ω ⊂ Rd provided u is a strong solution of Lu = 0

in the Sobolev space W 2,p
`oc (Ω;Rn), for some p ∈ [1,∞).

Systems like the above appear in the study of jump diffusion processes with a discrete component

[1]. In this paper, we obtain analogues of Harnack’s inequality for L-harmonic functions of operators

in the class L(λ, d, n). We use the technique introduced by Krylov for estimating the oscillation

of a harmonic function on bounded sets [3]. The main results are given in Section 2. Section 3 is

devoted to proofs and auxiliary results.

2. Main Results

Throughout the paper, Ω denotes a bounded domain in Rd. We first establish a weak version of

Harnack’s inequality, under general conditions.

Theorem 2.1. Let Γ ⊂ Ω be a closed set. There exists a constant K1 > 0, depending only on d, n,

the diameter of Ω, the distance between Γ and ∂Ω and the bound λ, such that for any nonnegative

L-harmonic function u in Ω, with L ∈ L(λ, d, n),

(2.1) sup
x∈Γ

{
ui(x)

}
≤ K1 max

1≤k≤n
inf
x∈Γ

{
uk(x)

}
, ∀ i ∈ {1, . . . , n} .

An inequality stronger than (2.1) is obtained under an irreducibility condition on the coupling

coefficients. We need to introduce some additional notation.

For a measurable set A ⊂ Rd, |A| denotes the Lebesgue measure of A, while ‖ · ‖p;A denotes the

norm of Lp(A), 1 ≤ p ≤ ∞. Also, for A ⊂ Ω, ‖ · ‖k,p;A denotes the restriction to A of the standard

norm of W k,p(Ω). These norms are extended to vector valued functions u using the convention

‖u‖ =
∑n
i=1 ‖ui‖.

Definition 2.1. For Ω ⊂ Rd and L ∈ L(λ, d, n), let CL(Ω) ∈ Rn×n denote the matrix defined by

[
CL(Ω)

]
ij

:=
‖cij‖1;Ω

|Ω| , for i 6= j , i, j ∈ {1, . . . , n} ,

with diagonal entries equal to 0. Given a nonnegative matrixM ∈ Rn×n and a pair i, j ∈ {1, . . . , n},
we say that j is reachable from i, provided that the ij’th element of

(
I + M

)n−1 is positive,

and denote this by i
M−→ j. Furthermore, the matrix M is called irreducible if i M−→ j for all
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i, j ∈ {1, . . . , n}; otherwise, it is called reducible. We say that L ∈ L(λ, d, n) is µΩ-irreducible in

Ω if there exists an irreducible matrix S ∈ Rn×n, with elements in {0, 1} and µΩ ∈ R such that

µΩCL(Ω) ≥ S (here, the inequality is meant elementwise). The class of all µΩ-irreducible operators

whose coefficients akij have a uniform Lipschitz constant γ is denoted by L(λ, d, n, γ, µΩ).

Theorem 2.2. Let Γ ⊂ Ω be a closed set. There exists a positive constant K2 =

K2(Ω, Γ, λ, d, n, γ, µΩ), such that for any nonnegative L-harmonic function u in Ω, with L ∈
L(λ, d, n, γ, µΩ),

(2.2) ui(x) ≤ K2uj(y) , ∀ x, y ∈ Γ , i, j ∈ {1, . . . , n} .

More generally, if L ∈ L(λ, d, n), and c̃Ω denotes the smallest positive element of CL(Ω), then

(2.3) ui(x) ≤ K ′2uj(y) , ∀ x, y ∈ Γ , if j
CL(Ω)−−−−→ i ,

where K ′2 = K2(Ω, Γ, λ, d, n, γ, 1
c̃Ω

)

Remark 2.1. Let Γ ⊂ Ω and L ∈ L(λ, d, n) be given. Then, for the existence of a constant K2 > 0,

satisfying (2.2) for all nonnegative L-harmonic functions u in Ω, it is necessary that L be µΩ-

irreducible in Ω. Otherwise, there exists a nontrivial partition {I1, I2} of {1, . . . , n} such that

cij = 0 a.e. in Ω, for all (i, j) ∈ I1 × I2; therefore, any nonzero L-harmonic function u, satisfying

uk = 0, for k ∈ I1, violates (2.2).

There is a fair amount of work in the literature on maximum principles for cooperative, weakly-

coupled systems [6], [7]. In [6], it is assumed that the coupling coefficients are positive. Note that

the notion of irreducibility in Definition 2.1, is in an ‘average’ sense only, and that CL(Ω) may

be irreducible even if
[
cij(x)

]
is reducible at every x ∈ Ω. We state the following version of the

strong maximum principle, which follows immediately from Theorem 2.2, and does not seem to be

available in the existing literature.

Corollary 2.1. Let L ∈ L(λ, d, n) be such that CL(Ω) is irreducible. Then any nonnegative L-

harmonic function u in Ω is either positive in Ω or identically zero.

It is well known that, in general, there is no Harnack inequality for nonnegative L-superharmonic

functions, i.e., functions u satisfying Lu ≤ 0 in Ω, for an elliptic operator L. Serrin [8] has utilized

the maximum principle to provide a growth estimate for functions in terms of the Harnack constant

of a comparison function and the value of ‖Lu‖∞, but this estimate does not result in a Harnack

inequality. Theorem 2.2 can be employed to provide a Harnack constant for all superharmonic

functions u for which −Lu lies in a convex positive cone of L∞. We introduce the following

definition.
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Definition 2.2. For a measurable set A ⊂ Rd having finite, nonzero measure and for a constant

θ ≥ 1, we define the positive convex cone K(θ,A) ⊂ L∞(A;Rn) by:

K(θ,A) :=
{
f ∈ L∞(A;Rn) : f ≥ 0 , min

1≤k≤n

‖fk‖1;A

|A|‖fk‖∞;A
≥ 1
θ

}
.

Suppose, for the moment, that n = 1 and u is a nonnegative function satisfying Lu = −f in Ω,

with L ∈ L(λ, d, 1) and f ∈ K(θ,Ω). We form the cooperative system

Lv1 + θf(x)
‖f‖∞;Ω

v2 = 0

∆v2 = 0 .

Clearly, (v1, v2) = (u, θ−1‖f‖∞;Ω), is a nonnegative solution and c̃Ω ≥ 1. Therefore, from (2.3), we

deduce Harnack’s inequality for u by setting λ = max{λ, θ} and µΩ = 1 in the Harnack constant

K2.

For the elliptic system in (1.1)–(1.2), this procedure leads to the following:

Corollary 2.2. Let Γ ⊂ Ω be a closed set and u a nonnegative function satisfying −Lu ∈ K(θ,Ω).

The following are true:

(i) If L ∈ L(λ, d, n, γ), then (2.1) holds, with a Harnack constant

K1K2(Ω, Γ,max{λ, θ}, d, 2n, γ, 1) .

(ii) If L ∈ L(λ, d, n, γ, µΩ), then (2.2) holds, with a constant

K2(Ω, Γ,max{λ, θ
µΩ
}, d, 2n, γ, µΩ) .

3. Proofs of the Results

If u ∈ W 2,p
`oc (Ω;Rn), for some p ∈ [1,∞), is a solution of Lu = f in Ω and f ∈ L∞(Ω;Rn),

then u ∈ W 2,p
`oc (Ω;Rn), for all p ∈ [1,∞). This fact follows from the interior Lp estimates

for second derivatives of uniformly elliptic equations and the well known Sobolev inequalities.

However, the natural space for some considerations is W 2,d. This is the case, for example, for

the Aleksandroff estimate (Lemma 3.2) and the comparison principle [2] which states that if

ϕ,ψ ∈ W 2,d
`oc (Ω;Rn)

⋂
C0(Ω;Rn) satisfy Lϕ ≤ Lψ in Ω and ϕ ≥ ψ on ∂Ω, then ϕ ≥ ψ in

Ω.

Let u ∈W 2,d
`oc (Ω;Rn) be a nonnegative solution of Lu = 0 in Ω, with L ∈ L(λ, d, n). Augmenting

the dimension of the domain, let I ⊂ R be a bounded open interval and define the function

v : Ω × I → Rd by v(x, xd+1) := u(x) exp
(√
nλxd+1

)
, and the operator L̃ ∈ L((n + 1)λ, d + 1, n)

by

L̃k := Lk +
∂2

∂x2
d+1

− nλ+ ckk .
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Then L̃v = 0, and any Harnack estimates obtained for L̃-harmonic functions clearly hold for

u. Observe that the coefficients c̃kj of the operator L̃ form a sub-stochastic matrix, i.e., they

satisfy
∑n
j=1 c̃kj ≤ 0, for all k = 1, . . . , n. Hence, without loss of generality, we restrict the proofs

to operators in L(λ, d, n) and L(λ, d, n, γ, µΩ) whose coupling coefficients form a sub-stochastic

matrix, and denote the corresponding classes by L0(λ, d, n) and L0(λ, d, n, γ, µΩ), respectively.

Let UΩ (U−Ω) denote all nonnegative functions u ∈W 2,d
`oc (Ω;Rn)

⋂
C0(Ω;Rn), satisfying Lu = 0

(Lu ≤ 0) in Ω, for some L ∈ L0(λ, d, n). If ξ ∈ R, then u ≥ ξ is to be interpreted as ui ≥ ξ, for

all i ∈ {1, . . . , n}, and if ξ = (ξ1, . . . , ξn) ∈ Rn, then u ≥ ξ ⇐⇒ ui ≥ ξi, for all i ∈ {1, . . . , n}.
In general, all scalar operations on Rn-valued functions are meant to be componentwise. For more

clarity, we denote all Rn-valued quantities by a bold letter. If Γ is a closed subset of Ω, x ∈ Ω and

ξ ∈ Rn+, we define

Ψx
(
UΩ, Γ ; ξ

)
:= inf

u∈UΩ

{
u(x) : u ≥ ξ on Γ

}
.

Lastly, deviating from the usual vector space notation, if D is a cube in Rd and δ > 0, δD denotes

the cube which is concentric to D and whose edges are δ times as long.

We start with a measure theoretic result, announced in [4]. For a proof see [2].

Lemma 3.1. Let K ⊂ Rd be a cube, Γ ⊂ K a closed subset and 0 < α < 1. Define

Q :=
{
Q : Q is a subcube of K and |Q

⋂
Γ | ≥ α|Q|

}
Γ̃ :=

⋃
Q∈Q

(
3Q
⋂
K) .

Then either Γ̃ = K, or |Γ̃ | ≥ 1
α |Γ |.

Next we state a variant of the weak maximum principle of A. D. Alexandroff. This particular

form of the estimate is derived by first using a transformation to remove the first-order terms and

then dominating the Ld norm with the L∞ norm. The steps of the proof are quite standard and

are therefore omitted.

Lemma 3.2. There exist constants C1 > 0 and κ0 ∈ (0, 1] such that if D ⊂ Rd is any cube of

volume |D| ≤ κ0 and ϕ ∈ W 2,d
`oc (D)

⋂
C0(D) satisfies Lkϕ ≥ f in D and ϕ = 0 on ∂D, with

f ∈ Ld(D) and L ∈ L(λ, d, n), then

sup
x∈D

{
ϕ(x)

}
≤ C1|D|1/d‖f‖d;D .

For the remainder of this section, D denotes an open cube in Rd of volume not exceeding the

constant κ0 in Lemma 3.2.
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Lemma 3.3. There exist constants β0 > 0 and α0 < 1 such that, if Γ is a closed subset of some

cube D ⊂ Rd, satisfying |Γ | ≥ α0|D|, then

inf
x∈ 1

3D
Ψx
(
U
−
D, Γ ; ξ

)
≥ β0ξ , ∀ ξ ∈ Rn+ .

Proof. Observe that if u ∈ U
−
D, then each component uk satisfies Lkuk ≤ 0 on D. Define ϕ′, ϕ′′ ∈

W 2,d
`oc (D)

⋂
C0(D) by

Lkϕ
′ = −IΓ , Lkϕ

′′ = −IΓ c , in D

and ϕ′ = ϕ′′ = 0 , on ∂D .

Then ϕ := ϕ′ + ϕ′′ satisfies Lkϕ = −1 in D and ϕ = 0 on ∂D. Without loss of generality, suppose

D is centered at the origin and consider the function

ψ(x) :=
d∏
i=1

(
|D|2/d − 4x2

i

)
.

Clearly, ψ = 0 on ∂D and ψ > 0 in D; moreover, there exists a positive constant C2 such that

inf
x∈ 1

3D

{
ψ(x)

}
≥ C2|D|2/d‖Lkψ‖∞;D , ∀ L ∈ L0(λ, d, n) .

Therefore, by the comparison principle,

(3.1) ϕ(x) ≥ ψ(x)
‖Lkψ‖∞;D

≥ C2|D|2/d , ∀ x ∈ 1
3D .

Using Lemma 3.2, we obtain

(3.2)
ϕ′ ≤ C1|D|1/d|Γ |1/d = C1|D|2/d

(
|Γ |
|D|

)1/d

ϕ′′ ≤ C1|D|1/d|Γ c|1/d = C1|D|2/d
(

1− |Γ ||D|
)1/d

.

By (3.1) and (3.2),

ϕ′(x) ≥ C2|D|2/d − C1|D|2/d
(

1− |Γ ||D|
)1/d

, ∀ x ∈ 1
3D .

On the other hand, since Lkϕ′ = 0 in D \ Γ and ϕ′ = 0 on ∂D, the comparison principle yields

(3.3) inf
x∈ 1

3D

{
uk(x)

}
≥ ξk

C2 − C1

(
1− |Γ ||D|

)1/d

C1

(
|Γ |
|D|

)1/d
.

Selecting α0 to satisfy

α0 ≥ 1−
( C2

2C1

)d
,

inequality (3.3) yields

inf
x∈ 1

3D
uk(x) ≥ C2ξk

2C1
.

Hence, the claim follows with β0 = C2
2C1

. ¤
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Lemma 3.4. For each δ > 0, there exists k′δ > 0 such that if Q ⊂ (1− δ)D is a subcube of an open

cube D ⊂ Rd, then

Ψx
(
U
−
D,

1
3Q; ξ

)
≥ k′δξ , ∀ x ∈ 3Q

⋂
(1− δ)D , ∀ ξ ∈ Rn+ .

Proof. Let B(r) ⊂ Rd denote the ball of radius r centered at the origin. We claim that there exists

a constant m0 > 0 such that if r ≤ 1, then

(3.4) inf
x∈B( 3r

4 )
Ψx
(
U
−
B(r), B

(
r
4

)
; ξ
)
≥ m0 ξ , ∀ ξ ∈ Rn+ .

In order to establish (3.4) we use the function

ϕ(x) := exp
{

16λ2(d+ 1)
(

1− ‖x‖
2

r2

)}
− 1 , x ∈ B(r) ,

which satisfies Lkϕ(x) ≥ 0 for all L ∈ L0(λ, d, n), provided ‖x‖ ≥ r
4 and r ≤ 1. By the comparison

principle, (3.4) holds with

m0 =
e7λ2(d+1) − 1
e15λ2(d+1) − 1

.

It follows that if B(r) is centered at y, and x is a point in D such that the distance between ∂D

and the line segment joining x and y is at least r, then

(3.5) Ψx
(
U
−
D, B

(
r
4

)
; ξ
)
≥ (m0)` ξ , with ` =

⌈
4‖x−y‖−r

2r

⌉
, ∀ ξ ∈ Rn+ .

If we define

k′δ := m
`(δ)
0 , `(δ) :=

⌈ 6
√
d

min{1, δ}
⌉
,

then an easy calculation, using (3.5) with r = min
{

2
3 ,

δ
2

}
|Q|1/d, establishes the result. ¤

Lemma 3.5. Suppose there exist constants ε and θ such that if Γ ⊂ (1− δ)D is a closed subset of

some cube D and ξ ∈ Rn+, then

inf
x∈ 1

3D
Ψx
(
U
−
D, Γ ; ξ

)
≥ εξ, whenever |Γ | ≥ θ|D| .

Then there exists a constant kδ > 0 such that

inf
x∈ 1

3D
Ψx
(
U
−
D, Γ ; ξ

)
≥ εkδξ, whenever |Γ | ≥ α0θ|D| ,

where α0 is the constant in Lemma 3.3.

Proof. Suppose |Γ | ≥ α0θ|D| and let y ∈ Γ̃ , with Γ̃ as defined in Lemma 3.1 corresponding to

α = α0 and K = (1 − δ)D. Then there exists a subcube Q ⊂ K such that |Γ
⋂
Q| ≥ α0|Q| and

y ∈ 3Q
⋂
K. We use the identities,

(3.6) Ψx
(
U
−
D, Γ ; ξ

)
≥ Ψx

(
U
−
D, Γ̃ ; inf

y∈Γ̃
Ψx
(
U
−
D, Γ ; ξ

))
7



              
and

Ψy
(
U
−
D, Γ ; ξ

)
≥ Ψy

(
U
−
D,

1
3Q; inf

z∈ 1
3Q
Ψz
(
U
−
D, Γ ; ξ

))
(3.7)

≥ Ψy
(
U
−
D,

1
3Q; inf

z∈ 1
3Q
Ψz
(
U
−
Q, Γ

⋂
Q; ξ

))
.

By Lemma 3.3,

(3.8) inf
z∈ 1

3Q
Ψz
(
U
−
Q, Γ

⋂
Q; ξ

)
≥ β0ξ ,

while from Lemma 3.4, we obtain Ψy
(
U
−
D,

1
3Q;β0ξ

)
≥ β0k

′
δξ, for all y ∈ 3Q

⋂
K. Hence, combining

(3.7) and (3.8), we obtain

(3.9) inf
y∈Γ̃

Ψy
(
U
−
D, Γ ; ξ

)
≥ kδξ , with kδ := β0k

′
δ .

By Lemma 3.1, |Γ̃ | ≥ 1
α0
|Γ | ≥ θ|D|. Therefore, by hypothesis,

inf
x∈ 1

3D
Ψx
(
U
−
D, Γ̃ ; kδξ

)
≥ εkδξ ,

which along with (3.6) and (3.9) yield the desired result. ¤

Proposition 3.1. The following estimates hold:

(i) Let D be a cube and Γ ⊂ (1− δ)D a closed subset. Then for all ξ ∈ Rn+,

(3.10) inf
x∈ 1

3D
Ψx
(
U
−
D, Γ ; ξ

)
≥ β0

(
|Γ |
|D|

)ρ(δ)
ξ , ρ(δ) :=

log kδ
logα0

,

where the constants α0, β0 and kδ are as in Lemma 3.3 and Lemma 3.5.

(ii) There exists a real function F defined on [0, 1], with F (θ) > 0, if θ > 0 such that if Γ ⊂ D
is a closed subset of a cube D, then

(3.11) inf
x∈ 1

3D
Ψx
(
U
−
D, Γ ; ξ

)
≥ F

(
|Γ |
|D|

)
ξ , ∀ ξ ∈ Rn+ .

Proof. Part (i) is direct consequence of Lemmas 3.3 and 3.5. For part (ii), choose δ = |Γ |
4d|D| . Then,

(3.12)
|Γ
⋂

(1− δ)D|
|D| ≥ |Γ ||D| −

(
1− (1− δ)d

)
≥ |Γ ||D| − dδ ≥

3|Γ |
4|D| .

Since

Ψx
(
U
−
D, Γ ; ξ

)
≥ Ψx

(
U
−
D, Γ

⋂
(1− δ)D; ξ

)
,

then if we let

F (θ) := β0

(
3θ
4

)ρ( θ4d )
,

the bound in (3.11) follows from (3.10) and (3.12). ¤
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Proposition 3.2. If D is a cube, u ∈ UD and q = F
(

1
2

)
, with F (·) as defined in Proposition 3.1

(ii), then

osc(uk; 1
3D) ≤

(
1− q

2

)
max

1≤k≤n
sup
x∈D

{
uk(x)

}
, ∀ k ∈ {1, . . . , n} ,

where osc(f ;A) denotes the oscillation of a function f over a set A.

Proof. Let
Ma
k := sup

x∈ 1
3D

{
uk(x)

}
, Ma := max

1≤k≤n
Ma
k

ma
k := inf

x∈ 1
3D

{
uk(x)

}
, ma := min

1≤k≤n
ma
k

and M b, mb be the corresponding bounds relative to D. Consider the sets

Γ
(k)
1 :=

{
x ∈ D : uk(x) ≤ Mb+mb

2

}
Γ

(k)
2 :=

{
x ∈ D : uk(x) ≥ Mb+mb

2

}
.

Suppose |Γ (k)
1 | ≥ 1

2 |D|. Since M b − u is nonnegative and M b − uk ≥ Mb−mb
2 in Γ

(k)
1 , applying

Proposition 3.1 (ii), we get

M b − uk(x) ≥ qM
b −mb

2
, ∀ x ∈ 1

3D .

Consequently, Ma
k ≤M b − qMb−mb

2 and since ma ≥ mb, we obtain

(3.13) Ma
k −ma ≤M b −mb − qMb−mb

2 ≤
(
1− q

2

)
M b .

On the other hand, if |Γ (k)
2 | ≥ 1

2 |D|, the analogous argument relative to the nonnegative function

u, yields

(3.14) Ma −ma
k ≤

(
1− q

2

)
M b ,

and the result follows by (3.13)–(3.14). ¤

Proposition 3.3. There exists a constant M1 > 0 such that, for any u ∈ UD

sup
x∈ 1

9D

{
ui(x)

}
≤M1 max

1≤k≤n
inf
x∈ 1

9D

{
uk(x)

}
, ∀ i ∈ {1, . . . , n} .

Proof. Let β0 be as in Lemma 3.3 and ρ(·) and q as in (3.10) and Proposition 3.2, respectively.

Define

(3.15) ρ :=
1

dρ( 2
3 )

and q0 :=
(1− q

4 )
(1− q

2 )
.
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We claim that the value of the constant M1 may be chosen as

(3.16) M1 :=
4q0

qβ0

[
27n1/d

2
(
qρ0 − 1

)]1/ρ

.

We argue by contradiction. Suppose u violates this bound and let
{
x(1), . . . , x(n)

}
denote the

points in 1
9D where the minima of u are attained, i.e.,

inf
x∈ 1

9D

{
uk(x)

}
= uk(x(k)) , 1 ≤ k ≤ n .

Without loss of generality, suppose that max
1≤k≤n

{
uk(x(k))

}
= 1 and that for some y0 ∈ 1

9D and

k0 ∈ {1, . . . , n}, uk0(y0) = M > aM1, with a > 1. Using the estimate for the growth of the

oscillation of u in Proposition 3.2, we then show that u has to be unbounded in 1
3D. By hypothesis,

M
a exceeds M1 in (3.16) and in order to facilitate the construction which follows we choose to express

this as

(3.17)
1
9

+ 3n1/d

( 4a
qβ0M

)ρ ∞∑
i=0

( 1
q0

)iρ
<

1
3
.

For ξ > 0, define

D(ξ)
k :=

{
x ∈ 1

3D : uk(x) ≥ ξ
}
, D(ξ) :=

⋃
1≤k≤n

D(ξ)
k .

If 1k ∈ Rn+ stands for the vector whose k-th component is equal to 1 and the others 0, then

(3.18) u(x(k)) ≥ Ψx(k)

(
UD,D(ξ)

k ; ξ1k
)
, ∀ k ∈ {1, . . . , n} ,

while, on the other hand, Proposition 3.1 yields,

(3.19) Ψx(k)

(
UD,D(ξ)

k ; ξ1k
)
≥ β0

(
|D(ξ)
k |
|D|

)ρ( 2
3 )

ξ1k , ∀ k ∈ {1, . . . , n} .

By (3.18)–(3.19) and using (3.15), we obtain the estimate

(3.20) |D(ξ)| ≤
∑

1≤k≤n
|D(ξ)
k | ≤

∑
1≤k≤n

(
uk(x(k))
ξβ0

)ρd
|D| ≤ n

(
1
ξβ0

)ρd
|D| ,

for all ξ > 0. Choosing ξ = qM
4 , we have by (3.20)

∣∣∣∣{x ∈ 1
3D : max

1≤k≤n

{
uk(x)

}
≥ qM

4

}∣∣∣∣ ≤ n( 4
qβ0M

)ρd
|D| .
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Hence, if Q0 is a cube of volume |Q0| = n
(

4a
qβ0M

)ρd|D| centered at y0, then

(3.21) osc(uk0 ;Q0) >
(
1− q

4

)
M .

By Proposition 3.2 and (3.21), there exists y(1) ∈ 3Q0 and k1 ∈ {1, . . . , n} such that

uk1(y(1)) >
(1− q

4 )
(1− q

2 )
M = q0M .

Note that (3.17) implies that 3Q0 ⊂ 1
3D. This allows us to repeat the argument above, this time

choosing ξ = q0
qM
4 in (3.20) and a cube Q1 of volume n

(
4a

q0qβ0M

)ρd|D| centered at y(1), to conclude

that there exists y(2) ∈ 3Q1 and k2 ∈ {1, . . . , n} such that uk2(y(2)) ≥ q2
0M . Inductively, we

construct a sequence
{
y(i), ki, Qi

}∞
i=0

satisfying, for all i = 0, 1, . . . ,

(3.22)

y(0) = y0 ∈ 1
9D
⋂
Q0 , y(i) ∈ Qi

⋂
3Qi−1 ,

|Qi|1/d = n1/d
(

1
q0

)iρ( 4a
qβ0M

)ρ|D|1/d ,
uki(y

(i)) ≥ qi0M .

The inequality in (3.17) guarantees that y(i) ∈ 1
3D, for all i. Hence, (3.22) implies that u is

unbounded in 1
3D and we reach a contradiction. ¤

Theorem 2.1 now follows via the standard technique of selecting an appropriate cover of Γ

consisting of congruent cubes and applying the estimates in Proposition 3.1 and Proposition 3.3.

We next proceed to prove Theorem 2.2. We need the following lemma.

Lemma 3.6. Let D ⊂ Rd be a cube, L ∈ L0(λ, d, 1, γ) and f ∈ K(θ,D). There exists a constant

C ′ = C ′(|D|, λ, d, γ, θ) > 0 such that if ϕ is a solution to the Dirichlet problem Lϕ = −f on D,

with ϕ = 0 on ∂D, then

inf
x∈ 1

3D

{
ϕ(x)

}
≥ C ′‖f‖∞;D.

Proof. First note that the Dirichlet problem as defined has a unique strong solution ϕ ∈
W 2,p
`oc (D)

⋂
C0(D), for all p ∈ [d,∞). Then, arguing by contradiction, suppose there exists a

sequence of operators
{
L(m)

}∞
m=1

⊂ L0(λ, d, 1, γ), with coefficients
{
a

(m)
ij , b

(m)
i , c(m)

}
, and a se-

quence of functions
{
f (m)

}∞
m=1

⊂ K(θ,D), with ‖f (m)‖∞;D = 1, such that the corresponding

solutions
{
ϕ(m)

}∞
m=1

satisfy

inf
x∈ 1

3D

{
ϕ(m)(x)

}
<

1
m2

, m = 1, 2, . . . .

By Proposition 3.1,

(3.23)
∣∣∣{x ∈ D : ϕ(m)(x) ≥ 1

m

}∣∣∣ ≤ ( 1
β0m

)ρd
|D| ,
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with ρ as defined in (3.15). Since the sequence ϕ(m) is bounded in L∞(D) (by Lemma 3.2), it

follows from (3.23) that ϕ(m) → 0 in Lp(D), as m → ∞, for all p ∈ [1,∞). For any subcube

D′ = δD, with δ < 1, and p ∈ [1,∞), we use the well known estimate

‖ϕ(m)‖2,p;D′ ≤ C ′′
(
‖ϕ(m)‖p;D + ‖f (m)‖p;D

)
,

for some constant C ′′ = C ′′(|D|, p, δ, λ, d, γ), to conclude that the first and second derivatives of

ϕ(m) converge weakly to 0 in Lp(D′), for all p ∈ [1,∞). In turn, since W 2,p
0 (D′) ↪→ W 1,p

0 (D′) is

compact for p > d, using the standard approximation argument we deduce that ∂ϕ(m)

∂xi
converges

in Lp(D′) strongly, for all i = 1, . . . , d. Also, since the sequence
{
a

(m)
ij

}
is uniformly Lipschitz, we

can extract a subsequence which converges uniformly. The previous arguments combined imply

that
{
L(m)ϕ(m)

}
converges weakly to 0 in Lp(D′), p ∈ [1,∞). On the other hand, if we choose

δ ≥
(
1− 1

2θ

)1/d, an easy calculation yields,∫
D′
f (m)(x) dx ≥ |D|

2θ
, m = 1, 2, . . . ,

resulting in a contradiction. ¤

Proof of Theorem 2.2. Let L ∈ L0(λ, d, n, γ, µΩ) and S =
[
sij
]

as in Definition 2.1. Select a

collection
{
D`, ` = 1, . . . , `0

}
of disjoint, congruent open cubes, whose closures form a cover of

Γ , in such a manner that 3D` ⊂ Ω, 1 ≤ ` ≤ `0, and D :=
`0⋃
`=1

D` is a connected set satisfying

|D| ≤
(

1− 1
2λµΩ

)
|Ω|. It follows that 2µΩCL(D) ≥ S. Therefore, for each pair i, j ∈ {1, . . . , n},

i 6= j, there exists `(i, j) ∈ {1, . . . , `0} such that

(3.24) ‖cij‖∞;D`(i,j) ≥
‖cij‖1;D`(i,j)

|D`(i,j)|
≥ sij

2µΩ
.

Define a collection
{
ϕij
}
i 6=j ⊂W

2,d
`oc (D`(i,j))

⋂
C0(D`(i,j)), by

Liϕij = −cij in D`(i,j) , and ϕij = 0 on ∂D`(i,j) .

Then, by Lemma 3.6 and (3.24), there exists a constant C ′ > 0, such that

(3.25) ϕij(x) ≥ C′

2µΩ
sij , ∀ x ∈ 1

3D`(i,j) , i 6= j .

By the comparison principle,

(3.26) ui(x) ≥ ϕij(x) inf
z∈D`(i,j)

{
uj(z)

}
, ∀ x ∈ D`(i,j) , i 6= j .

By Proposition 3.1, (3.25) and (3.26),

ui(y) ≥ F
(

1
9d

)
inf

x∈ 1
3D`(i,j)

{
ui(x)

}
(3.27)

≥ ε′F
(

1
9d

)
sij inf

z∈D`(i,j)

{
uj(z)

}
, ∀ y ∈ D`(i,j) , i 6= j .
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Moreover, provided 3Dk ⊃ Dk′ , 1 ≤ k, k′ ≤ `0, Proposition 3.1 also asserts that

inf
x∈Dk

{
u(x)

}
≥ F

(
1
3d

)
inf

x∈Dk′

{
u(x)

}
,

from which we deduce that

(3.28) inf
x∈Dk

{
u(x)

}
≥
(
F
(

1
3d

))`0
inf
x∈D`

{
u(x)

}
, ∀ k, ` ∈ {1, . . . , `0} .

Therefore, by (3.27) and (3.28), for all i 6= j,

inf
x∈D

{
ui(x)

}
≥
(
F
(

1
3d

))`0
inf

y∈D`(i,j)

{
ui(y)

}
≥ C′

2µΩ
F
(

1
9d

)(
F
(

1
3d

))`0
sij inf

z∈D`(i,j)

{
uj(z)

}
≥ C′

2µΩ
F
(

1
9d

)(
F
(

1
3d

))2`0
sij inf

x∈D

{
uj(x)

}
,

and in turn, the irreducibility of S implies that, for all i, j ∈ {1, . . . , n},

(3.29) inf
x∈D

{
ui(x)

}
≥
(

C′

2µΩ
F
(

1
9d

)(
F
(

1
3d

))2`0
)n−1

inf
x∈D

{
uj(x)

}
.

The result follows by combining (3.29) and the estimate in Theorem 2.1 relative to the closed set

D ⊂ Ω. ¤
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